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Abstract Starting from a classical 2D superconformal theory described by the Wess–
Zumino–Witten action, the canonical exterior formalism on group manifold for the heterotic
supersymmetric sigma model is constructed. The motion equations of the dynamical field
and the constraints are found and analyzed from the geometric point of view. It can be
seen how the use of the canonical exterior formalism is more adequate and simple because
of its manifest covariance in all the steps. The relationship between the form brackets de-
fined in the canonical exterior formalism and the Poisson-brackets is written. Later on, the
Dirac-brackets are written by using the second class constraints provided by the canonical
exterior formalism. As it can be seen the canonical exterior formalism allows to show how
the canonical quantization of the heterotic supersymmetric sigma model is facilitated.

1 Introduction

Recently [1], the supersymmetric extension of the Jackiw–Teitelboim (1 + 1) linear gravity
within the canonical exterior formalism (CEF) on group manifold was constructed. In this
context the role of the several fields was analyzed. The constraints and the field equation
were found. Finally, this supergravity model was treated in the second order formalism.

From several years ago the interest of the people in studying two-dimensional models
has been made evident. Two-dimensional gravity and supergravity models were constructed
from different point of view. There is a vast literature on the subject matter and a complete
list may not be feasible. In Ref. [1] was only included an incomplete list of works.

The different type of 2D gravity or supergravity models can be briefly enumerated as
follows.
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A class of linear gravity theories is based on the Riemann scalar curvature R. The first
model of two-dimensional gravity was constructed by Jackiw and Teitelboim (JT) by means
of dimensional reduction of the usual Einstein–Hilbert action in (2 + 1) dimensions [2–6].

Two-dimensional gravitational and vector gauge theories by reduction of D = 3 topolog-
ically massive models were also considered [7].

Later on, by starting from the gauge-theoretic formulation point of view, several works
were realized [8–16]. The geometrical structure of the different models obtained in this
framework are generally the de Sitter or anti-de Sitter groups (or the corresponding two-
dimensional graded ones). All these models have the remarkable property of possessing a
topological and gauge invariant formulation. In particular, in Refs. [13, 14] by using non-
geometrical fields other type of two-dimensional gravity models were considered. These
“string-inspired” models are based on the extended Poincaré group. It is possible to prove
that “black-hole” solution appears in this kind of models and so its study becomes interesting
from the quantum point of view.

In the last years the aforementioned research engendered much further works [17–21].
For instance, in Refs. [19] and [20], the two-dimensional reduction of the invariant

action of the gravitational Chern–Simons model was studied. This was done by means
of the Kaluza–Klein like ansatz, decomposing the three-dimensional metric into a two-
dimensional metric, a U(1) gauge field A = Aμdxμ and a scalar field φ. The dimensional
reduction procedure yields a two-dimensional topological theory. In Ref. [19] the main prob-
lem was to study local classical solutions, while in Ref. [20] the solutions are extended at
global level in order to construct the Carter–Penrose diagrams. It is shown that two types
of local classical solutions exist: symmetry breaking and kink solutions. It is interesting to
note that the kink make possible an space whose geometry is asymptotically anti-de Sit-
ter. At small distances the scalar curvature is positive and it vanishes at an intermediate
point. So, the effect of the kink is analogous to a geometric gravitational force and it can
be proved that the resulting two-dimensional action is formally similar to the action of the
dilaton model. In Ref. [20], in order to give the discussion to a global level, the action is
written by using target space coordinates. As it can be seen, the use of such coordinates
brings some advantages from classical as well as quantum point of view [17, 18]. Also, the
Bogomolnyi–Prasad–Sommerfield black holes were studied in the framework of the two-
dimensional dilaton supergravity [21].

On the other hand, as it is well known the 2D conformal supergravity is the proper frame-
work for the description of superstring theories (see for instance Refs. [22–25] and bibliog-
raphy quoted therein). This intuitive idea is originated by observing that two is the dimension
of the world-sheet (WS) spanned by a one-dimensional object while propagating in an ex-
ternal space-time, named target manifold (Mtarget). The two-dimensional manifolds play an
important role because they are responsible for the fundamental geometric structure of su-
perstring theory. Moreover, in order to make local the graded algebra, the two-dimensional
vielbein and the two-dimensional gravitino are needed. Of course, in a two-dimensional
world, the action reduces to a pure divergence in both cases gravity or supergravity and so,
the gravitational field is a non-dynamical one. The gravitational field must be interpreted
as a Lagrangian multiplier for the corresponding constraints giving the vanishing condition
of the matter fields stress-energy tensor. Consequently, the whole gravitational formalism
reduces to a theory of boundary conditions in two-dimension and so, only its topology is the
matter of interest. In fact, in the path-integral quantization framework, the two-dimensional
different metrics become, after division by the diffeomorphism group, in a discrete sum
over the topologies, labeled by a positive integer number g, i.e. the genus of the surface. At
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fixed topology a multiple integral over a finite dimensional space of complex parameters de-
fines the moduli space Mg , whose coordinates label the conformal classes of the WS. Next,
by means of a Wick rotation of the time variable, the superstring WS becomes a Riemann
surface which can be treated by using all the results provided by the algebraic geometry.

Historically, the important works given in Refs. [22–24] are devoted to the study of the
heterotic sigma model and conformal supergravity in two dimensions. These papers are
developed in the context of the Lagrangian formalism in components via Noether theorem.

By taking into account this last role of 2D conformal supergravity, and following the idea
of Ref. [1] the motivation of the present paper is essentially to study—from a mathematical
physics point of view—the supersymmetric sigma model of type II superstring in the frame-
work of the CEF on group manifold. The first advantage is that this formalism is covariant
in all its steps. Moreover, because of the direct relation between the form brackets provided
by the CEF and the Dirac brackets, the canonical quantization of the heterotic sigma model
is facilitated.

The paper is organized as follows: In Sect. 2, the main geometric definitions in 2D su-
perconformal space used in the construction of superconformal field theory are given. The
fundamental geometrical quantities of the group manifold G = Mtarget are written in terms of
the left-invariant or right-invariant one-forms containing the Wess–Zumino–Witten field. In
Sect. 3, starting from the geometric Lagrangian density which describes the (1,0) heterotic
σ model, the CEF on group manifold is constructed. In Sect. 4, the equations of motion are
found and their geometrical structure is analyzed. In Sect. 5, the relation between the usual
Hamiltonian formalism in components and the CEF is given. Finally, The Dirac-brackets are
defined in order to show that starting from the CEF the canonical quantization of the model
is facilitated.

2 Definitions and Preliminaries

First, we must consider that every consistent 2D conformal field theory corresponds to a
possible string vacuum and it is a suitable starting point for the string perturbation theory.
The Green functions of the 2D conformal field theory are then used to construct the string
amplitudes. In the geometrical picture, closed string as a one-dimensional loop moving in
a smooth target manifold Mtarget was systematically studied (see for instance Ref. [25]).
Hence, it is possible to regard as possible string vacua only those consistent conformal theo-
ries which are generated by embedding scalar functions Xμ(ξα) from the world-sheet (WS)
to that target space (Xμ ∈ Mtarget, ξα ∈ WS). In the two-dimensional framework the embed-
ding scalar functions Xμ(ξ) must be viewed as scalar fields coupled to the 2D gravitational
field with metric gαβ(ξ). The coupling is realized in such a way that the classical action must
be invariant under both, diffeomorphisms and Weyl transformations, relating two different
2D conformal metrics. Moreover, in the case of superstrings, the two-dimensional action
contains a convenient set of left-handed and right-handed 2D-fermions.

It is clear that a consistent conformal theory implies that the classical conformal theory
maintains the classical Virasoro algebra also at the quantum level. This is done by choosing
the field content in such a way that after quantization, all the central charges ci and the
coboundaries bi corresponding to the different fields in the theory, sum up to zero. So, these
quantum conformal theories, given by well defined choices of the target space, are suitable
string vacua.

As mentioned above the geometric structure underlying heterotic superstring is that of
N = 1, D = 2 conformal supergravity, i.e. the superspace named (1,0). The geometry of



Int J Theor Phys (2007) 46: 2758–2773 2761

this superspace of two bosonic coordinates z and z̄ and a single Majorana–Weyl fermionic
coordinate θ , is described by a supervielbein (V +,V −, ζ ) and an S0(1,1) connection ω. The
one-forms (V +,V −, ζ ) provide a basis for the cotangent space. The one-forms V + and V −
are the inner directions and the one-form ζ is the outer direction in the cotangent space.
Once the basis (V +,V −, ζ ) was given, it is possible to write the torsion and the curvature
of (1,0) superspace as follows

T + = dV + + ω ∧ V + = i

2
ζ ∧ ζ, (1)

T − = dV − − ω ∧ V − = 0, (2)

T o = dζ + 1

2
ω ∧ ζ = τV + ∧ V −, (3)

R = dω = RV + ∧ V − − iτ ζ ∧ V −, (4)

where in the right hand side of the above equations are written the correspondent para-
metrization of torsion and curvature consistent with the corresponding Bianchi identities.
In (3), (4) the superfield τ(z, z̄, ζ ) is the field strength of the two-dimensional gravitino that
provides a complete description of the heterotic geometry and R in (4) is the curvature that
equals twice the spinor derivative of τ .

Once (1), (2), (3), (4) are given, the intrinsic covariant derivatives D+,D−,Do remain
defined and they satisfy the following algebra

[D+,D−] = Rs + τDo, (5)

[Do,D+] = 0, (6)

[Do,D−] = isτ, (7)

[Do,Do] = i

2
D+, (8)

where s is the spin of the field acted on by the derivatives (s = 0 for scalars, s = 1
2 for

left-handed fermions and s = − 1
2 for right-handed fermions).

A classical 2D superconformal theory is described by the Wess–Zumino–Witten action
which can be formally written as follows

S =
∫

Σg

d2ξ detV (ξ)L(V ±, ζ(ξ), ϕi(ξ)), (9)

where the integral is defined over the Riemann surface Σg which is a 2D real manifold.
The one-forms V ± and ζ are respectively the vielbein and the gravitino fields which are the
supergravity background fields, and ϕi(ξ) is a convenient set of matter fields.

From several years ago, the geometric action of the (1,0) σ model was proposed. In
order to construct an example of such superconformal theory in the exterior canonical pic-
ture, in (9) we take as matter fields ϕi(ξ) the components of a superfield g(z, z̄, θ) which
describes the injection

g(z, z̄, θ) : SWS → G, (10)
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of the superworld-sheet into a simple group manifold G. This theory is called the Wess–
Zumino–Witten model (WZW).

All the geometrical quantities of Mtarget = G are constructed in terms of the left-invariant
or right-invariant one-forms

Ω = g−1dg, (11)

Ω̄ = dgg−1. (12)

So, the Lie algebra-valued one-forms Ω and Ω̄ are decomposed along a basis tA of the Lie
algebra associated to the group manifold G.

Ω = ΩAtA, (13)

Ω̄ = Ω̄AtA. (14)

From the above definition it is obvious that ΩA and Ω̄A satisfy the Maurer–Cartan equations

dΩA + 1

2
f A

BCΩB ∧ ΩC = 0, (15)

dΩ̄A − 1

2
f A

BCΩ̄B ∧ Ω̄C = 0, (16)

for the structure constant f A
BC of the Lie algebra associated to the group manifold G. Since

the one-forms ΩA and Ω̄A depend on the superspace coordinates (z, z̄, θ), they can be writ-
ten along a complete superspace basis of one-forms

ΩA = ΩA
+V + + ΩA

−V − + λAζ, (17)

and similarly for Ω̄A.
As it was already mentioned, the 2D field theory under review is a particular case of

a locally supersymmetric non-linear σ model. The target space metric gAB is in this case
the Killing metric gAB = f AMNf BMN . Hence it is necessary to introduce a target space
spin connection ωAB = −ωBA besides of the target space metric. By means of the structure
constant f ABC and by looking at the one-form ΩA as the vielbein of the group manifold G

it is possible to introduce a one-parameter family of spin connection defined by

ωAB
(α) = αf ABCΩC. (18)

The two-forms torsion and curvature associated to the family of connections written
in (18) are respectively defined as usual by the expressions

T A
(α) = dΩA + ωAB

(α) ∧ ΩB = T ABC
(α) ΩB ∧ ΩC, (19)

RAB
(α) = dωAB

(α) + ωAC
(α) ∧ ωCB

(α) = RABMNΩM ∧ ΩM, (20)

where

T ABC
(α) = −

(
α + 1

2

)
f ABC, (21)
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RABMN = −1

2
α(1 + α)f ABCf CMN. (22)

In order to simplify algebraic manipulations, we will work with the most simple geomet-
ric action of the (1,0) σ model. The extension to the geometric action of the (1,1) σ model
is straightforward [26], and it contains many more terms because of the presence of a second
bi-dimensional spinor μA.

So, the starting point is to consider the following geometric action

S(α) = k

8π

{∫
M2

[
(ΩA − λAζ ) ∧ (ΩA

+V + − ΩA
−V −) + 2iλA ∇αλ

A ∧ V +

+ λAΩA ∧ ζ − 4i

3

(
1

2
+ α

)
f ABCλAλBλCζ ∧ V +

+ ΩA
+ΩA

−V + ∧ V −
]

+ 1

6
(1 + 2α)

∫
M3

f ABCΩA ∧ ΩB ∧ ΩC

}
. (23)

The covariant differential of the two-dimensional spinor λA is given by

∇(α)λ
A = DλA + ωAB

(α) λ
B, (24)

where is well defined

DλA ≡ dλA + 1

2
ωλA. (25)

Analogously to (17), the one-form DλA is written along a complete superspace basis as
follows

DλA = D+λAV + +D−λAV − + Γ Aζ, (26)

where the outer component Γ A is given by

Γ A = − i

2
ΩA

+ + 1

2
f ABCλBλC. (27)

In the geometric action (23) the dynamical variables are given by

(a) The supergravity background one-form fields V +, V −, ζ .
(b) The WZW field g contained in the one-form field ΩA and its superpartner λA.
(c) The auxiliary 0-forms fields ΩA+ , ΩA− which play a double role: (i) enforces the rheo-

nomic parametrization, and (ii) the field equation yields ΩA± = tr(g−1∂±gtA).

The above action for the WZW model is an example of a locally supersymmetric two-
dimensional heterotic σ model.

3 Canonical Exterior Formalism on Group Manifold for the Heterotic
Supersymmetric Sigma Model

The CEF was constructed and applied to different models of gravity and supergravity in
diverse dimensions, as well as their coupling to matter supermultiplets and to the Yang–
Mills field [27–36]. The general response is that this formalism permits to find and study
constraints, equation of motion and all the dynamical properties of such systems in a more
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simple way that following the usual Lagrangian method. As it was already commented, the
CEF is covariant in all its steps because it is constructed by using only operation of the
exterior algebra. As it is obvious, in all the above papers the gravity or supergravity fields
are dynamics ones.

In the present paper the idea is to work by first time with the CEF applied to the de-
scription of the heterotic supersymmetric sigma model in which the supergravity field is a
non-dynamical one.

In (23) there are three critical values of α: α = − 1
2 ; α = 0 and α = −1. We will consider

the α = − 1
2 case, which corresponds to choose a metric connection for which the torsion

equation (19) is zero. Therefore, in such case the Lagrangian density is written as follows:

L = k

8π
[(ΩA − λAζ ) ∧ (ΩA

+V + − ΩA
−V −) + 2iλA∇λA ∧ V +

+ λAΩA ∧ ζ + ΩA
+ΩA

−V + ∧ V −]. (28)

In the Lagrangian density (28) the auxiliary two 0-forms fields ΩA+ , ΩA− are non-
geometrical objects and are introduced with the purpose of obtaining rheonomic equations
of motion, i.e. equations compatible with the Bianchi identities as it is required by the group
manifold approach [27, 28].

In order to obtain the equation of motion, instead of the WZW field g contained in the
one-form field ΩA, we can use as dynamical variable the tangent variation i.e.

δy = g−1δg = δyAtA, (29)

which is related to the variation of the one-form ΩA by

δΩA = dδyA + f ABCΩBdyC. (30)

The use of the 0-forms variables (yA ,λA) allows to obtain, for both variables, equations
of motion having the same structure. So, having in mind (29) and (30), and making in (28)
the change of variables, apart from a total exterior derivative the Lagrangian density writes

L = −λAζ ∧ ΠA − yA ∧ dΠA

+ f ABCΩByC ∧ ΠA − 2idλAλA ∧ V +

+ 2if ABCdλAλByC ∧ V +

+ if ABCλAλByCdV +

− if ABCf CDEλAλBΩDyE ∧ V +

− dλAyA ∧ ζ + dζλAyA

+ f ABCλAΩByC ∧ ζ + ΩA
+ΩA

−V + ∧ V −, (31)

where was defined

ΠA = ΩA
+V + − ΩA

−V −. (32)

Therefore, (31) is our starting point in order to construct the first-order CEF.
By following Ref. [34], we define the canonical conjugate momenta to each one of the

dynamical field variables μΣ = (yA,λA,V +,V −, ζ,ΩA+ ,ΩA−) for the compound index Σ .
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By means of the functional variation of the Lagrangian with respect to the “velocities” dμΣ ,
i.e.: πΣ = δL/δdμΣ , the canonical conjugate momenta remain defined as follows:

(i) The momenta associated with the 0-forms yA, λA respectively read

P A = δL
δ(dyA)

= 0 (33)

bosonic one-form, and

QA = δL
δ(dλA)

= −2iλAV + + 2if ABCλByCV + − yAζ (34)

fermionic one form.
(ii) The momenta associated with the supergravity background one-form fields V +, V −,

ζ are:
the bosonic 0-form

π+ = δL
δ(dV +)

= if ABCλAλByC − yAΩA
+ , (35)

the bosonic 0-form

π− = δL
δ(dV −)

= yAΩA
−, (36)

and the fermionic 0-form

πζ = δL
δ(dζ )

= λAyA. (37)

(iii) The momenta associated with the 0-forms ΩA+ , ΩA− are respectively the following
bosonic one-form

PA
+ = δL

δ(dΩA+)
= −yAV +, (38)

and

PA
− = δL

δ(dΩA−)
= yAV − (39)

bosonic one-form.
In the CEF, it is necessary to define a suitable operation involving forms, capable of

replacing the role of the classical Poisson brackets. Therefore, the graded form-brackets
operation between pairs of canonical variables is defined and it is given by

(μΣ,πΛ) = (−1)a+1+|A|δΣ
Λ , (40)

where a and |A| are respectively the degree and the Fermi grading of the form μΣ . The
remaining form-brackets properties for generic superforms were written in (2.2) of Ref. [34].

In the present case, the form-brackets between pairs of canonical variables write

(yA,PB) = (PB, yA) = −δA
B , (41)

(λA,QB) = −(QB,λA) = δA
B , (42)

(V +,π+) = (π+,V +) = 1, (43)
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(V −,π−) = (π−,V −) = 1, (44)

(ζ,πζ ) = −(πζ , ζ ) = −1, (45)

(ΩA
+,PB

+) = (PB
+ ,ΩA

+) = −δAB, (46)

(ΩA
− ,PB

−) = (PB
− ,ΩA

−) = −δAB. (47)

The set of momenta (33–39) defines the following primary constraints

ΦA = P A ≈ 0, (48)

Ψ A = QA + 2iλAV + − 2if ABCλByCV + + yAζ ≈ 0, (49)

ϕ+ = π+ − if ABCλAλByC + yAΩA
+ ≈ 0, (50)

ϕ− = π− − yAΩA
− ≈ 0, (51)

ϕζ = πζ − λAyA ≈ 0, (52)

ΘA
+ = PA

+ + yAV + ≈ 0, (53)

ΘA
− = PA

− − yAV − ≈ 0. (54)

By considering the definition and properties of the graded form-brackets written in (2.2)
of Ref. [34], it is possible to compute the form-brackets (ΦΣ,ΦΛ) for pairs of constraints.
It is straightforward to prove that all the primary constraints (48–54) are second-class ones,
that is

(ΦΣ,ΦΛ) �= 0. (55)

In the CEF, the conserved first-class dynamical quantity describing the dynamics of the
system is the extended Hamiltonian HT , and it is the bosonic two-form defined by (see
Ref. [34])

HT = Hcan + ΛΣ ∧ ΦΣ, (56)

where the Lagrange multipliers ΛΣ can be unambiguously determined. When the funda-
mental equation of motion in the CEF is taken into account, it is possible to write the
Hamiltonian equations for pairs of canonical variables,

dμΣ = (μΣ,HT ), (57)

dπΣ = (πΣ,HT ). (58)

From (57) and by using (56) the following general result is obtained

ΛΣ = dμΣ. (59)
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In (56) the canonical Hamiltonian Hcan = dμΣ ∧ πΣ −L is given by

Hcan = dyA ∧ PA + dλA ∧ QA + dV + ∧ π+ + dV − ∧ π−

+ dζ ∧ πζ + dΩA
+ ∧PA

+ + dΩA
− ∧PA

− −L (60)

which after using (31) for the Lagrangian it results

Hcan = λAζ ∧ (ΩA
+V + − ΩA

−V −)

− f ABCΩByC ∧ (ΩA
+V + − ΩA

−V −)

+ if ABCf CDEλAλBΩDyE ∧ V +

− f ABCλAΩByC ∧ ζ

− ΩA
+ΩA

−V + ∧ V −. (61)

4 Equations of Motion in the Canonical Exterior Formalism

The field equations of motion in the CEF are given by the consistency conditions on the
primary constraints, i.e.

dΦΣ = (ΦΣ,HT ) ≈ 0. (62)

As it was commented above the vielbein and the gravitino are not dynamical fields in 2D,
therefore the motion equation for the supergravity background fields V +,V − and ζ will be
not considered. The supergravity background fields play the role of Lagrange multipliers
associated to the primary constraints of the theory, that is the superstress-energy tensor and
the supercurrent. In fact, the superstress-energy tensor and the supercurrent one-forms are
respectively defined by making the variation of the action (23) with respect to the super-
vielbein (V +,V −, ζ ). As it is known in the classical theory these quantities are weakly zero
ones. From the quantum point of view they are used to construct the BRST-charge.

About the variables ΩA+ and ΩA− we remember that they are introduced to enforce the
rheonomic parametrization.

Therefore, the main equations are those for the fields yA and λA which respectively read

dΦM = (ΦMHT )

= (P M,Hcan) + ΛB ∧ (ΦM,ΦB) + ΣB ∧ (ΦM,ΨB)

+ Λ+ ∧ (ΦM,ϕ+) + Λ− ∧ (ΦM,ϕ−) + Σζ ∧ (ΦM,ϕζ )

+ ΔA
+ ∧ (ΦM,ΘA

+) + ΔA
− ∧ (ΦM,ΘA

−)

+ weakly zero terms = 0, (63)

dΨ M = (Ψ MHT )

= (QM,Hcan) + dyB ∧ (Ψ M,ΦB) − dλB ∧ (Ψ M,ΨB)

+ dV + ∧ (Ψ M,ϕ+) + dV − ∧ (Ψ M,ϕ−) + dζ ∧ (Ψ M,ϕζ )

+ dΩA
+ ∧ (Ψ M,ΘA

+) + dΩA
− ∧ (Ψ M,ΘA

−)

+ weakly zero terms = 0. (64)
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Now, the following explicit expressions for the form-brackets between constraints, must
be considered

(ΦA,ΦB) = 0, (65)

(ΦA,Ψ B) = 2if ABCλCV + − ζ δAB, (66)

(ΦA,ϕ+) = if ABCλBλC − ΩA
+, (67)

(ΦA,ϕ−) = ΩA
−, (68)

(ΦA,ϕζ ) = λA, (69)

(Ψ A,Ψ B) = −4iV +δAB, (70)

(Ψ A,ϕ+) = 2iλA, (71)

(Ψ A,ϕ−) = 0, (72)

(Ψ A,ϕζ ) = 0, (73)

(ΦA,ΘB
+ ) = −δABV +, (74)

(ΦA,ΘB
− ) = δABV −, (75)

(Ψ A,ΘB
+ ) = (Ψ A,ΘB

− ) = 0, (76)

(ϕ+,ΘA
+) = (ϕ+,ΘA

−) = 0, (77)

where the form brackets between constraints involved in (63) and (64) were only written.
By replacing the above expressions for the form-brackets between constraints, in (63)

and (64), they respectively read

dΦM = −
(

dΠA − f ABCΩB ∧ ΠC +DλA ∧ ζ + λAT o

+ f ABCΩBλC ∧ ζ − 2if ABCλBDλC ∧ V + + 1

2
f ABCλB λCζ ∧ ζ

− if ABCf CDEΩBλDλE ∧ V +
)

+ weakly zero terms = 0, (78)

dΨ M = −(−4i∇λA ∧ V + + ζ ∧ ΠA + ζ ∧ ΩA + λAζ ∧ ζ )

+ weakly zero terms = 0. (79)

Both equations (78) and (79) defined over the heterotic superspace are two-forms. Having
the same structure they can be decomposed into four independent sectors corresponding to
the inner-inner direction V + ∧ V − the inter-outer directions V + ∧ ζ and V − ∧ ζ and the
outer-outer direction ζ ∧ ζ .
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The first step is to consider the Maurer–Cartan two-form equation (15) and the one-forms
defined in (17), (26) and (27) decomposed along the supergravity background one-form
fields (V +,V −, ζ ).

By straightforward calculation it can be shown:
(i) Considering (78) it can be seen that the coefficients of the components V + ∧ζ , V − ∧ζ

and ζ ∧ζ cancel automatically when the rheonomic parametrization (see (17), (26) and (27))
is introduced. On the other hand, the cancellation of the component V + ∧ V − gives rise to
the following condition

D−ΩA
+ +D+ΩA

− − τλA − 2if ABCλBD−λC − if ABCf CDEΩB
−λDλE = 0. (80)

(ii) Analogously, by considering (79) it can be seen that the coefficients of the com-
ponents V + ∧ ζ , V − ∧ ζ and ζ ∧ ζ cancel automatically, while the cancellation of the
component V + ∧ V − gives rise to the following condition

D−λA − 1

2
f ABCλBΩC

− = 0. (81)

Now, considering the different projections for the Maurer–Cartan equation (15), the fol-
lowing conditions are found:

(iii) The coefficient cancellation of the components V + ∧ ζ and V − ∧ ζ implicates re-
spectively the following conditions

DoΩ
A
+ −D+λA − f ABCΩB

+λC = 0, (82)

DoΩ
A
− −D−λA − f ABCΩB

−λC = 0, (83)

and the cancellation of the coefficient of V + ∧ V − gives rise to the Bianchi identity, i.e.

D+ΩA
− −D−ΩA

+ − τλA + f ABCΩB
+ΩC

− = 0. (84)

The coefficient of ζ ∧ ζ cancel automatically.
Therefore, the conclusion is that the motion field equations (78) and (79) for the fields yA

and λA, are reduced to the two differential equations (80) and (81), and the remaining con-
ditions are all geometrical ones.

5 Usual Hamiltonian Formalism Versus Canonical Exterior Formalism

From the above construction it can be seen that the CEF is covariant in all the steps. But,
as it was commented in detail in Ref. [34] the CEF is not a proper Hamiltonian formal-
ism because the extended Hamiltonian HT defined in (56) is not a true generator of time
evolutions. The form-brackets do not contain the same information as the Poisson brackets.
Really, the Poisson-brackets contain more information than the form-brackets defined in the
CEF. In fact, the CEF can be related with the Hamiltonian formalism in components, and so
the form-brackets are related to the Poisson brackets but not in a trivial way [28, 34]. The
integral relationship which relates the form-brackets (A,B) to the Poisson brackets between
forms [A(x),B(y)] is given by

(−1)a+1
∫

Σ

α ∧ (A,B) ∧ β =
∫ ∫

Σ×Σ

α(x) ∧ [A(x),B(y)] ∧ β(y), (85)

where a is the degree of the form A and α, β are text forms.
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On the other hand, it is well known that the second order formalism is necessary when
the model is considered from the quantum point of view. In fact, it is in the second order for-
malism where the dynamical degrees of freedom are separated from those of gauge degrees
of freedom.

In Ref. [1] Sect. 4, the second order formalism by solving the torsion field equation in
two-dimensional supergravity models was studied in detail. In this paper we only reproduce
a few useful concepts.

When the spacetime decomposition is considered and a privileged time direction is cho-
sen in the manifold M2, the manifest covariance is lost. Usually, the time variable is chosen
so that the one-form dx0 can be detached. More precisely, we consider fields and forms
defined on a spacelike x0 = t = t0 one-dimensional “surface” Σ , by defining the injection
map χ : Σ → M2. Thus, the associated pullback χ∗ acts on any form by setting t = t0 and
dt0 = 0.

Once the space-time decomposition is done and the surface Σ remains defined, the or-
dinary Poisson brackets are obtained by expanding the forms A(x) and B(y), given in (85),
in the holonomic bases dxi , dyj . Then, the ordinary Poisson brackets between fields and
momenta components can be used.

All the quantities provided by the CEF, i.e. the total Hamiltonian, the constraints and
the field equations must be projected on the “surface” Σ . Once the canonical conjugate
momenta πA are written in terms of the spatial components dxi of the holonomic basis, the
Poisson brackets between pairs of canonical variables remain defined as usual.

The final form of the Hamiltonian as the generator of time evolutions in the canonical
component formalism is obtained by taking into account the metricity condition in one and
two dimensions (see (50–54), Sect. 4 of Ref. [1]).

Another question to take into account is that the CEF plays, with respect to the first
order canonical component formalism, an analogous role to that played by the first order
canonical component formalism with respect to the second order formalism. Therefore, we
will consider that all the primary constraints in the CEF remain at least weakly zero in the
canonical component formalism (see, for instance Refs. [28, 34]). Consequently, we assume
that the restrictions to Σ of the constraints (48), (49), (52–54) are strongly equal to zero.
For the remaining constraints (50), (51) ϕ± the restriction to Σ is maintained as a weakly
zero quantity, i.e.:

χ∗ϕ± ≈ 0. (86)

The bosonic 2-form (56) provides by the CEF can be written as follows
∫

HT =
∫

dx0H̃, (87)

where the time variable is chosen so that the 1-form dx0 can be detached. The remaining
bosonic one-form integrated in one dimension is the proper Hamiltonian generator of time
evolutions and it turns out to be of the form

H̃ =
∫

dx

(
1

2
ω0H+ Va0Ha + ξ̄0αHα

)
. (88)

Finally, it can be proven that the constraints H, Ha and Hζ are the first-class constraints
closing the following constraint superalgebra

[HA(x),HB(y)] = ΛC
ABHC(x)δ(x − y), (89)
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where ΛC
AB = RC

AB − CC
AB are the structure functions for curvatures RC

AB and structure con-
stant CC

AB of the graded Lie algebra. In particular it is easy to see that the antisymmetric
weakly zero quantity H that appears in (88) is the generator of local Lorentz rotations,
that in context of the CEF naturally appears when the space-time decomposition is carried
out. Contrarily, starting from the component Hamiltonian formalism, the generator of local
Lorentz rotations must be introduced ad hoc by demanding the closure of the constraint
algebra.

By following the same steps as those given in Sect. 4 of Ref. [1], it is straightforward to
explicitly write the first class constraints that verify (89).

Before concluding this section a further consideration about the exterior canonical for-
malism must be done: as it was said, all the primary constraints provided by the CEF are
second-class ones, and so they are not related with the gauge symmetry of the model. More-
over, the possibility of using different Lagrangian densities means that there is not a unique
set of canonical conjugate momenta and consequently there is not a unique set of primary
constraints in the CEF. On the other hand, in the second-order formalism the second-class
constraints must be eliminated. This is done by defining the Dirac brackets from the Poisson
brackets. As it is well known the Dirac brackets [F,G]D for generic functional F and G are
obtained from the set of second-class constraints ΨA by means of the definition

[F,G]D = [F,G] − [F,ΨA]CAB[ΨB,G], (90)

where CAB[ΨB,ΨC] = δA
C for the compound indices A,B,C. To compute the Dirac brack-

ets (86) we must consider the restriction to Σ of all the second-class constraints (48–54).
As it is known, the main properties of the Dirac brackets are:
(i) If one of the function F or G is first class, then

[F,G]D ≈ [F,G]. (91)

In particular, for the Hamiltonian H holds

[F,H]D ≈ [F,H]. (92)

This means that the same equations of motion are obtained by using the Poisson or the
Dirac brackets. Thus, the rate of change in time of any functional F of the canonical vari-
ables is also given by

Ḟ = [F,H]D. (93)

(ii) For any functional F of the canonical variables it is

[ΨA,H]D = 0. (94)

Therefore, we can set ΨA = 0 either before or after evaluating the Dirac brackets.
Once the Dirac brackets are evaluated from (86), the transition to quantum theory is re-

alized as usual in a canonical formalism by replacing classical fields by quantum field oper-
ators acting on some Hilbert space. Consequently, the canonical Dirac brackets are replaced
by quantum commutators between field operators.

Finally, let us a few words about the well known canonical quantization procedure . . . in
the usual literature.

We consider as an example the WZW field g(z, z̄) defined in (10) for the bosonic case.
It can be shown [25], that ΩA+ becomes a conserved chiral current i.e., D−ΩA+ = 0. This last
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equation implies D+Ω̄A− = 0. Therefore, out of an on-shell WZW field g(z, z̄) two analytic
currents can be constructed

JA(z) = −i
k

2
ΩA

+ = i
k

2
ΩA

z = −i
k

2
tr(g−1∂zgtA), (95)

J̄ A(z̄) = −i
k

2
Ω̄A

− = i
k

2
Ω̄A

z̄ = −i
k

2
tr(∂z̄gg−1tA). (96)

Now, as it is known from the current literature, the Dirac brackets of the dynamical
variables JA(z) and J̄ A(z̄) write as follows

[JA(z), J B(w)]D = i
f ABCJC(w)

(z − w)
+ k

2

δAB

(z − w)2
, (97)

[JA(z), J̄ B(w̄)]D = 0, (98)

[J̄ A(z̄), J̄ B(w̄)]D = i
f ABCJC(w)

(z̄ − w̄)
+ k

2

δAB

(z̄ − w̄)2
. (99)

After performing a Laurent series expansion of the two fields JA(z) and J̄ A(z̄) and re-
placing the canonical Dirac brackets by the quantum commutators between field operators
the canonical quantization is realized.

6 Conclusions

We conclude that due to its intrinsic geometrical language, the CEF can be used as an in-
teresting formal resource to understand the structure of the supergravity field theories in
diverse dimensions, as well as the heterotic supersymmetric sigma model describing type II
superstring.

The first remark is that the CEF is not a proper canonical formalism because it does not
propagate data defined on an initial surface as it is required by a standard mechanical system.
However, as it can be seen from the above construction, that the CEF is a powerful method
at classical level. Due to the covariance of the CEF in all its steps this formalism allows to
find the equations of motion and the constraints in a very simple way without introducing
complicate algebraic manipulations.

Since all the primary constraints coming from the CEF are second-class ones, the Dirac
brackets are easily defined by projecting these constraints on the surface Σ .

The relation between the CEF and the usual first-order canonical formalism written in
components, was also given. This relation was done by means of a nontrivial integral rela-
tionship between the form-brackets and the usual Poisson brackets.

In order to go over the second-order formalism, the space-time decomposition in M2

was performed, losing the explicit covariance of all the equations. Once this is done, the
Hamiltonian system is treated as usual according to the Dirac prescriptions. From the total
Hamiltonian coming from the CEF, it is evaluated the proper Hamiltonian (88) as the gen-
erator of time evolution. As it was shown, the primary constraint obtained in the CEF also
plays an important role in the construction of the proper Hamiltonian (88). Precisely, it is
given in terms of the first-class constraints which close the constraint algebra. Therefore, all
the Hamiltonian gauge symmetries remain determined and the apparent gauge degrees of
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freedom can be unambiguously removed leaving only the physical ones. When the model is
considered from the quantum point of view this last step is necessary.

Finally, the CEF can be used for describing the heterotic σ model on a general target
space Mtarget of dimension D = dMink + dcompact.
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